Hello,

i got hypnotized by these forms? is there anything to built up this in dynamo ? or placing families based on that

KR

Andreas

Hello,

i got hypnotized by these forms? is there anything to built up this in dynamo ? or placing families based on that

KR

Andreas

1 Like

Hi, you looked on the site (there is his address on his file) of Mr. Vikram

Mr. Marcel must have leads too I think, he seems a fan of geometric objects

cordially

christian.stan

2 Likes

Let me sleep on it

No ,seriously iâ€™ve moved onwards since.

Maybe @Vikram_Subbaiah can be of assistance

3 Likes

Here is a surface I donâ€™t know if it comes within the prerogatives, you can add a little movement to the cylinder

23 janvier funny Draxl.dyn (29.1 KB)

cordially

christian.stan

1 Like

Not Rheotomic, but this thread has similar things

2 Likes

Hi @Draxl_Andreas you could have a look at this grasshopper script if you have access to rhino:

If you have, but havenâ€™t worked with grasshoppoer yet: Itâ€™s quite similar to dynamo and you should have no problem in analysing how the script works.

Here is a demo video of the author using his script:

2 Likes

@christian.stan @solamour @Marcel_Rijsmus @leonard.moelders ,

it is fake but funny â€¦ i found something to the Dyole function

thats exposed to the grasshopper graph as pythoncodeâ€¦

```
#Seghier Mohamed Abdelaziz - 2021
import Rhino.Geometry as rg
import ghpythonlib.components as ghc
import math
pow = math.pow
sin = math.sin
cos = math.cos
pi = math.pi
sqrt = math.sqrt
q = p*n
def prop(z,t,p,q):
w = pow(z,p/q)
s = (p*t+2*pi)/q
v = [w,s]
return v
def _d(z,t,p,q):
w = pow(z,p/q)
s = (p*t+2*pi)/q
v = pow(z*cos(t)-w*cos(s),2)+pow(z*sin(t)-w*sin(s),2)
return v
def ddz_d(z,t,p,q):
w = pow(z,p/q)
s = (p*t+2*pi)/q
ddz_w = (p/q)*pow(z,(p-q)/q)
v = 2*(w*cos(s) - z*cos(t))*(ddz_w*cos(s) - cos(t))+ 2*(w*sin(s) - z*sin(t))*(ddz_w*sin(s) - sin(t))
return v
def ddt_d(z,t, p,q):
w = pow(z, p/q)
s = (p*t + 2*pi)/q
dds_t = (p/q)
v = 2*( z*cos(t) - w*cos(s) )*( -z*sin(t) + w*sin(s)*dds_t )+ 2*( z*sin(t) - w*sin(s) )*( z*cos(t) - w*cos(s)*dds_t )
return v
def _s(z,t, p,q):
v = pow(z + pow(z, p/q), 2)
return v
def ddz_s(z,t, p,q):
w = pow(z, p/q)
ddz_w = (p/q)*pow(z, (p-q)/q)
v = 2*(w+z)*(ddz_w+1)
return v
def _r(z,t, p,q):
v = _d(z,t,p,q) / _s(z,t,p,q)
return v
def ddz_r(z,t, p,q):
v = (ddz_d(z,t,p,q) * _s(z,t,p,q) - _d(z,t,p,q) * ddz_s(z,t,p,q)) / pow( _s(z,t,p,q), 2 )
return v
def ddt_r(z,t, p,q):
v = (ddt_d(z,t,p,q) * _s(z,t,p,q)) / pow( _s(z,t,p,q), 2 )
return v
#-------------------------------------------------------
def _f(z, t):
return _r(z,t,0,1) - _r(z,t,p,q)
def ddz_f(z, t):
return ddz_r(z,t,0,1) - ddz_r(z,t,p,q)
def ddt_f(z, t):
return ddt_r(z,t,0,1) - ddt_r(z,t,p,q)
def _g(z, t):
return _r(z,t,0,1) - _r(pow(z, p/q), (p*t + 2*pi)/q, 0 ,1)
def ddz_g(z, t):
return ddz_r(z,t,0,1) - ddz_r(pow(z, p/q), (p*t + 2*pi)/q, 0,1) * (p/q)*pow(z, (p-q)/q)
def ddt_g(z, t):
return ddt_r(z,t,0,1) - ddt_r(pow(z, p/q), (p*t + 2*pi)/q, 0,1) * (p/q)
#-------------------------------------------------------
class doyle:
def find_root(z, t):
for i in range(100):
v_f = _f(z, t)
v_g = _g(z, t)
z= z; t= t; r= sqrt(_r(z,t,0,1))
a = ddz_f(z,t)
b = ddt_f(z,t)
c = ddz_g(z,t)
d = ddt_g(z,t)
det = a*d-b*c
z -= (d*v_f - b*v_g)/det
t -= (a*v_g - c*v_f)/det
return z,t,r
root = find_root(2,0)
z = root[0]
t = root[1]
r = root[2]
a = [z * cos(t), z * sin(t) ]
_z = pow(z, p/q)
_t = (p*t+2*pi)/q
_r = 0.0
b = [_z * cos(_t), _z * sin(_t) ]
a= doyle.a; b= doyle.b; r=doyle.r; mod_a = z = doyle.z; t= doyle.t
def cmul(w,z):
v = [w[0]*z[0] - w[1]*z[1],w[0]*z[1] + w[1]*z[0]]
return v
def modulus(p):
v = sqrt(p[0]*p[0] + p[1]*p[1])
return v
def crecip(z):
d = pow(z[0],2)+pow(z[1],2)
v = [-z[1]/d, z[0]/d]
return v
circles = []
def Spiral(r, start_point, delta, min_d, max_d):
recip_delta = crecip(delta)
q = cmul(start_point, recip_delta)
mod_q = modulus(q)
circle = rg.Circle(rg.Plane.WorldXY, rg.Point3d(q[0], q[1], 0), mod_q*r)
circles.Add(circle)
q = cmul(q, recip_delta)
return circles
scale = pow(mod_a, -1)
min_d = scale
n = n-1
max_d = q*n
start = a
for i in range(max_d):
start = cmul(start, b)
Circles = Spiral(r, start, a, min_d, max_d)
def mobius(g,c,a,q,bool):
G = ghc.trees.Kangaroo2Component.MbiusTransformation(g,c,a,q,bool)
return G
G = ghc.trees.PolarArray(Circles,rg.Plane.WorldXY,p,2*pi)[0]
if T == True:
G = ghc.trees.FlipMatrix(G)
C = ghc.Circle(rg.Plane.WorldXY,pi*C)
G = mobius(G,C,pi/2,Q,False)
G = ghc.trees.Rotate(G,pi/2,rg.Plane.WorldZX)[0]
G = mobius(G,C,-pi/2,0,False)
R = ghc.trees.DeconstructArc(G)[1]
P = ghc.trees.Evaluate('if(x>10,0,1)',R)
G = ghc.trees.CullPattern(G,P)
else:
G = ghc.trees.FlipMatrix(G)
```

Doyle_Spiral_V01.dyn (96.2 KB)

6 Likes